10. References#


Robert Bastian, Richard. Weberling, and Frank. Palilla. Ultraviolet spectrophotometric determination of nitrate...application to analysis of alkaline carbonates. Analytical Chemistry, 29:1795‚Äď1797, 1957.


Beaton, A.¬†D., C.¬†L. Cardwell, R.¬†S. Thomas, V.¬†J. Sieben, F.-E. Legiret, E.¬†M. Waugh, P.¬†J. Statham, M.¬†C. Mowlem, and H.¬†Morgan. Lab-on-chip measurement of nitrate and nitrite for in situ analysis of natural waters. Environmental science & technology, 46(17):9548‚Äď9556, 2012. URL:, arXiv:, doi:https://doi.org/10.1021/es300419u.


Susan Becker, Michio Aoyama, E. Malcolm S. Woodward, Karel Bakker, Stephen Coverly, Claire Mahaffey, and Toste Tanhua. Go-ship repeat hydrography nutrient manual: the precise and accurate determination of dissolved inorganic nutrients in seawater, using continuous flow analysis methods. Frontiers in Marine Science, 7:908, 2020. URL: https://www.frontiersin.org/article/10.3389/fmars.2020.581790, doi:https://doi.org/10.3389/fmars.2020.581790.


A.J. Birchill, G.¬†Clinton-Bailey, R.¬†Hanz, E.¬†Mawji, T.¬†Cariou, C.¬†White, S.J. Ussher, P.J. Worsfold, E.¬†P. Achterberg, and M.¬†Mowlem. Realistic measurement uncertainties for marine macronutrient measurements conducted using gas segmented flow and lab-on-chip techniques. Talanta, 200():228‚Äď235, 2019. URL:, arXiv:, doi:https://doi.org/10.1016/j.talanta.2019.03.032.


Anne Daniel, Agathe La√ęs-Huon, Carole Barus, Alexander¬†D. Beaton, Daniel Blandfort, Nathalie Guigues, Marc Knockaert, Dominique Munaron, Ian Salter, E.¬†Malcolm¬†S. Woodward, Naomi Greenwood, and Eric¬†P. Achterberg. Toward a harmonization for using in situ nutrient sensors in the marine environment. Frontiers in Marine Science, 6:773, 2020. URL: https://www.frontiersin.org/article/10.3389/fmars.2019.00773, doi:10.3389/fmars.2019.00773.


M.S. Finch, D.J. Hydes, C.H. Clayson, B.¬†Weigl, J.P. Dakin, and P.¬†Gwilliam. A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction calibration and initial sea trials. Analytica Chimica Acta, 377(2-3):167‚Äď177, 1998. URL:, arXiv:, doi:https://doi.org/10.1016/S0003-2670(98)00616-3.


Peter Griess. Vorl√§ufige notiz √ľber die einwirkung von salpetriger s√§ure auf amidinitro- und aminitrophenyls√§ure. Annalen der Chemie und Pharmacie, 106():123‚Äď125, 1858. URL:, arXiv:, doi:.


T.¬†Hull, N.¬†Greenwood, A.¬†Birchill, A.¬†Beaton, M.¬†Palmer, and J.¬†Kaiser. Simultaneous assessment of oxygen and nitrate-based net community production in a temperate shelf sea from a single ocean glider. Biogeosciences Discussions, 2021:1‚Äď25, 2021. URL: https://bg.copernicus.org/articles/18/6167/2021/, doi:https://doi.org/10.5194/bg-2021-170.


Ken Johnson, Orens Pasqueron De Fommervault, Romain Serra, Fabrizio D'Ortenzio, Catherine Schmechtig, Hervé Claustre, and Antoine Poteau. Processing bio-argo nitrate concentration at the dac level. ():, 2018. URL:, arXiv:, doi:https://doi.org/10.13155/46121.


Kenneth Johnson and Luke Coletti. In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean. Deep Sea Research Part I: Oceanographic Research Papers, 49():1291‚Äď1305, 2002. URL:, arXiv:, doi:https://doi.org/10.1016/S0967-0637(02)00020-1.


Kenneth¬†S. Johnson, Carole¬†M. Sakamoto-Arnold, and Carl¬†L. Beehler. Continuous determination of nitrate concentrations in situ. Deep Sea Research Part I: Oceanographic Research Papers, 36(9):1407‚Äď1413, 1989. URL:, arXiv:, doi:https://doi.org/10.1016/0198-0149(89)90091-5.


Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark J. Hopwood, Rainer Kiko, Alexandra N. Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens. Climate-biogeochemistry interactions in the tropical ocean: data collection and legacy. Frontiers in Marine Science, 8:1270, 2021. URL: https://www.frontiersin.org/article/10.3389/fmars.2021.723304, doi:10.3389/fmars.2021.723304.


David Meyer, Ralf D. Prien, Louis Rautmann, Malte Pallentin, Joanna J. Waniek, and Detlef E. Schulz-Bull. In situ determination of nitrate and hydrogen sulfide in the baltic sea using an ultraviolet spectrophotometer. Frontiers in Marine Science, 5:431, 2018. URL: https://www.frontiersin.org/article/10.3389/fmars.2018.00431, doi:https://doi.org/10.3389/fmars.2018.00431.


Carole M. Sakamoto, Kenneth S. Johnson, and Luke J. Coletti. Improved algorithm for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods, 7():, 2009. URL:, arXiv:, doi:https://doi.org/10.4319/lom.2009.7.132.


Carole¬†M. Sakamoto, Kenneth¬†S. Johnson, Luke¬†J. Coletti, and H.W. Jannasch. Pressure correction for the computation of nitrate concentrations in seawater using an in situ ultraviolet spectrophotometer. Limnol. Oceanogr. Methods, 15():897‚Äď902, 2017. URL:, arXiv:, doi:https://doi.org/10.1002/lom3.10209.


Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel. Remote and local drivers of oxygen and nitrate variability in the shallow oxygen minimum zone off mauritania in june 2014. Biogeosciences, 16(5):979‚Äď998, 2019. URL:, arXiv:, doi:http://dx.doi.org/10.5194/bg-16-979-2019.


A.¬†G. Vincent, R.¬†W. Pascal, A.¬†D. Beaton, J.¬†Walk, J.¬†E. Hopkins, E.¬†M.¬†S. Woodward, M.¬†Mowlem, and M.¬†C. Lohan. Nitrate drawdown during a shelf sea spring bloom revealed using a novel microfluidic in situ chemical sensor deployed within an autonomous underwater glider. Marine Chemistry, 205():29‚Äď36, 2018. URL:, arXiv:, doi:https://doi.org/10.1016/j.marchem.2018.07.005.


X. Zhu, K. Yu, X. Zhu, J. Su, and C. Wu. An improved algorithm for measuring nitrate concentrations in seawater based on deep-ultraviolet spectrophotometry: a case study of the aoshan bay seawater and western pacific seawater. Sensors, 21(3):965, 2021. URL:, arXiv:, doi:https://doi.org/10.3390/s21030965.